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Abstract

Introduction Non-local muscle fatigue (NLMF) is charac-
terized by muscle performance impairments in a contralat-
eral or remote non-exercised muscle(s) following a fatigu-
ing protocol of a different muscle group(s). This topic is
of interest as it affords insights into physiological determi-
nants of muscle fatigue and may provide practical applica-
tions concerning the order of exercises in training and reha-
bilitation programs.

Methods A literature review was conducted using Web of
Science, PubMed, and Google Scholar databases to evalu-
ate the NLMF effects and possible underlying mechanisms.
Overall, 35 studies with 58 outcome measures that met the
inclusion criteria were identified.

Results The literature is conflicting with approxi-
mately half of the studies reporting NLMF effects (32 of
58 measurements). However, on closer examination 76 %
of outcome measures of the lower limbs reported NLMF
effects (23 of 30 measurements) compared to only 32 % in
the upper body (9 of 28 measurements). Thus, it appears
that NLMF effects may be muscle group dependent.
Also, tests that involve prolonged or repetitive contrac-
tions provide clearer evidence of NLMF. Other variables
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potentially influencing the size of the NLMF effect include
the fatigued muscle groups, the protocols used to elicit the
fatigue, gender and training background of participants.
Conclusion While the NLMF literature is conflicting,
certain variables appear to affect NLMF responses which
can account for some of the discrepancies. Furthermore,
the NLMF effects may be attributed to four different but
interconnected pathways: neurological, biochemical, bio-
mechanical and psychological.

Keywords Crossover fatigue - Cross-education -
Contralateral muscles - Force - Endurance

Abbreviations
1RM 1 Repetition maximum
FDI First dorsal interosseous

Mmax Femoral nerve stimulation
MVC  Maximum voluntary contraction
NLMF Non-local muscle fatigue

RPE Rating of perceived exertion
TMEP Thoracic motor evoked potential
Introduction

Muscle fatigue commonly refers to a transient decrease in
the muscles’ capacity to produce force or power (Gande-
via 2001). Despite a great deal of accumulated research on
this topic, uncertainty still exists as to why muscle fatigue
occurs under various conditions (Enoka and Duchateau
2008). While the majority of muscle fatigue literature
investigates the effects of fatigue in relation to the working
muscles (Gandevia 2001; Allen et al. 2008), an emerging
line of research examines the effects of fatigue on rested
muscle groups (Halperin et al. 2014c; Kennedy et al. 2013).
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This aspect of fatigue has been termed crossover fatigue
to denote a temporary deficit in performance of the rested,
contralateral limb muscles following a fatiguing protocol
to the opposite limb (Martin and Rattey 2007; Doix et al.
2013). However, the broader term of non-local muscle
fatigue (NLMF) is used to indicate a temporary deficit in
performance of non-exercised muscle groups that could
be located contralateral, or ipsilateral, as well as inferior
or superior to the fatigued muscle groups (Halperin et al.
2014c; Kennedy et al. 2013) and this definition will be used
throughout this review.

The NLMF research is of interest for a number of rea-
sons. First, it seeks to address the question of whether
fatigue is specific to the working muscles or is it more of a
systemic response. Answering this would greatly enhance
our understanding of the mechanisms responsible for mus-
cle fatigue and how these may then be ameliorated with
training. Second, NLMF research outcomes may provide
practical insights into the order of exercises used in train-
ing or rehabilitation programs. Importantly, some muscle
groups may be more susceptible to NLMF and this should
be considered when planning training or rehabilitation
programs. However, such considerations have yet to be
accounted for in the relevant literature (Simao et al. 2012)
despite emerging evidence of its relevance (Halperin et al.
2014c).

This review seeks to critically discuss and summarize
the relevant available NLMF literature related to four per-
tinent variables: (1) the type of fatiguing protocols; (2)
quantification of the NLMF response; (3) muscle specific
NLMF effects; (4) gender and training background of par-
ticipants. Finally, we also seek to provide a hypothesis
based on four potential interconnected pathways responsi-
ble for NLMF: neurological, biochemical, biomechanical
and psychological.

Search strategy

A literature search was performed independently by two
co-authors using SPORT Discus, Pubmed, Web of Sci-
ence and Google Scholar databases. The search time period
ranged from January 1989 to June 2015 using the follow-
ing-key terms: contralateral, non-local, cross-over, upper-
lower in conjunction with muscle fatigue. After a relevant
article was identified from the database search, the associ-
ated reference lists were carefully examined to identify any
further articles not detected in the earlier search. The opera-
tional definition of muscle fatigue utilized as an inclusion
criteria for studies in this review, was a voluntary reduc-
tion in the ability of a muscle to produce force or power
[e.g. maximal voluntary contractions (MVC)] (Gandevia
2001). However, studies that examined a time to task fail-
ure exercises at a constant level (e.g. cycling with a given
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resistance) were also included. Thus the inclusion criteria
for studies in this review were: (1) The investigation con-
tained a fatiguing exercise of at least one muscle group,
followed by a performance test for a non-exercised mus-
cle group(s); (2) The non-exercised muscle group(s) could
not be the antagonists to the fatigued muscle groups (e.g.,
elbow extensors and flexors), as co-contractions could lead
to fatigue thereby confounding the rested state of the mus-
cles. (3) Participants had to be healthy and active; (4) The
manuscript must be available in the English language and
published as an article in a peer-reviewed journal or con-
ference proceeding. Further to these inclusion criteria, our
primary classification variable was that the study must have
reported either a muscle force response or a time to exhaus-
tion response to the fatiguing exercise task.

Search result

The database searches returned a total of 37 relevant arti-
cles. After reading and applying the inclusion criteria, 35
studies were retained for critical examination. Two inves-
tigations were excluded from the final analysis as one
reported similar data in two journals (Martin and Rattey
2007; Rattey et al. 2006), while a second investigation
(Seaward and Clarke 1992) employed a fatiguing proto-
col that we believe lacked sufficient intensity to elicit a
NLMF response (10 min of running at submaximal inten-
sity among trained runners). The included investigations
reported quantifying NLMF with 58 different performance
measures (e.g., decrements in force or time to exhaustion)
with only 32 positively identifying NLMF effects (Tables 1,
2). A summary of supplementary measures used to describe
the performance decrements, such as muscle activation and
blood lactate levels, are also provided in Tables 1 and 2.
Unfortunately, only two-thirds of the included manuscripts
reported absolute values or effect sizes. Furthermore, the
majority of included NLMF investigations were conducted
with a small number of participants, and only 16 studies
included a control condition, thereby not allowing for a
robust meta-analysis. However, to provide context and sup-
port to our assessment we have reported percent differences
where required, and Cohen’s d effect sizes are reported in
the Tables 1 and 2 when absolute values and standard devi-
ations or the effects sizes were stated in studies.

Fatiguing protocols

A confounding yet linked variable when critically review-
ing the magnitude of NLMF is the intensity (e.g., percent
of IRM or MVC), contraction activation strategy (e.g.,
concentric vs. eccentric; continuous vs. discrete), and num-
ber of limbs involved (unilateral vs. bilateral) during the
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Table 1 continued

Effect sizes (d)

Key findings

Testing protocol

Tested muscles
groups

Fatiguing protocol

Fatigued muscles

groups

Study design &

subjects

References

0.3

2 “Wingates” interspersed | PP by 5 and 1 % in first and

Lower body

3 x 10 reps of bicep curls and

Bilateral EF

11 recreationally

Grant et al. (2014)

second Wingate
1 Blood lactate at onset of Wingate

1 MVC 4.4 % (light)
J MVC 7.1 (heavy)

by 6 min

one set to failure with 70 % of
IRM interspersed by 30 s

active males

C-W

0.29
0.53

J Time to exhaustion 8 % (heavy) 0.29

4 sets to task failure of KE with Contralateral KE MVC

Unilateral KE

12 recreationally

Kawamoto and Behm

Isometric time to exhaus-

40 % (light) and 70 % (heavy)

of MVC

active males

C-W

(2014)

tion test with 70 % of

MVC

>0.1

| Time to exhaustion test 2 %

(light)

<> MVC and jump height of non-

NA

Contralateral PF - 3 MVCs followed by 10

Repeated sets of 30 rebound

Unilateral PF

25 healthy male

Regueme et al.

exercised PF

unilateral drop jumps

jumps until exhaustion
3 min between each set

subjects

Uc-w

(2007)

EF elbow flexors, EMG electromyography, TMEP thoracic motor evoked potentials, /77 interpolated twitch technique, KE knee extensors, MVC maximal voluntary contraction, NA not avail-

able, PF plantar flexors, PP peak power, RM repetition maximum, RPE rate of perceived exertion, C controlled condition included, UC uncontrolled study design, W within subject study design

 Studies reported in tables I and II

fatiguing protocols. Each of these protocol permutations
serves as a fundamental tool of adjustment in training pro-
gram design literature; systematic investigations of these
variables are scarce within NLMF literature.

Contraction intensity

A high intensity isometric fatiguing protocol with the hand
grip muscles (100 % of MVC) to task failure was compared
to a low intensity protocol (30 % of MVC) in regards to
their effects on the non-exercised plantar flexors (Ken-
nedy et al. 2013). The high intensity protocol resulted in
significantly greater force reductions (23 %) compared to
a low intensity protocol (8 %) (Kennedy et al. 2013). In a
study by Kawamoto and Behm (2014), fatiguing the non-
dominant knee extensor with loads equal to 70 % of MVC
to task failure resulted in a larger NLMF effect in the con-
tralateral knee extensor compared to a lighter load equal to
40 % MVC (7 vs. 4.4 %). Rasmussen et al. (2010) reported
that a 20 min low intensity lower body cycling task did
not affect elbow flexion MVC or activation. However, a
high intensity cycling protocol completed to task failure
decreased MVC (5 %) and activation (12 %).

Further evidence demonstrating the lack of NLMF effect
following a low intensity fatiguing protocol was reported
by Paillard et al. (2010) and Arora et al. (2015). Both
investigations tested the non-exercised contralateral knee
extensor following a low intensity fatiguing protocol of
the contralateral knee extensor. Arora et al. (2015) imple-
mented 15 sets of isometric contractions (16 s contractions
with 4 s recovery) performed at 30 % of MVC until a 50 %
decrease in MVC was observed, while Paillard et al. (2010)
used 10 sets of 50 isometric submaximal (10 % of MVC)
repetitions with a work to rest ratio of 4/2 s. In muscles of
the upper body, however, similar force deficits (~9 %) were
observed in rested FDI muscle after performing one of two
fatiguing protocols with the contralateral FDI: a continuous
2 min high intensity (100 % of MVC) or a constant sub-
maximal intensity (30 % MVC) contraction interspersed by
a4 s MVC every 30 s until failure (Post et al. 2008). These
few studies suggest that higher intensity contractions may
lead to greater NLMF in the lower body compared to lower
intensity ones, and may not influence the upper body to an
equivalent extent.

Contraction activation strategy

Few studies have directly compared the effect of muscle
contraction activation strategy (cyclical concentric only,
repeated voluntary concentric contractions or isometric,
repeated stretch—shortening cycle contractions, continu-
ous voluntary isometric or a form of involuntary stimulated
contraction) on manifestations of NLMF. In early work by

@ Springer
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g z Grabiner and Owings (1999), fatiguing the knee extensors
S gg s = % with concentric contractions prior to testing the contralat-
8 = % :‘ED § g 3, eral limb knee extensors led to no observed NLMF effects,
% g £8% e whereas force production actually improved (~11 %) fol-
é s 853 E § g lowing an eccentric fatiguing protocol (Grabiner and
: ces S Owings 1999). The use of isometric and cyclical muscle
= ER g i contractions shows a greater consmtency towards ol:?se.rv—
£Z Z L = 2 able NLMF (Table 1). In contrast, there‘ is greater 'varlatl'on
§ E % %D % é < in reported results after repeated dynamic contractions with
4 % 8 E‘J Z Eb ) ? resistance (concentric and eccentric). For example, none. of
'—%D 0 E i £ ?:E)D § = % the four studies utilizing a fatiguing runr.nng intervention
& E % E:‘l : E “zé“ ) 3 reported NLMF effects with the rested grip muscles (Ro§s
g [157F°0 cF et al. 2007, 2010; Place et al. 2004; Millet et al. 2003). This
: % could potentially be the reflexive and mechanical benefits
Eﬂ E S of the stretch—shortening cycle (Komi and Bosco 1978)
§ i = 2 with short transient recovery periods (flight phase) 1F)etween
g % % o § :é contractions helping to alleviate NLMF whe.n running. The
g 5 E 2 g & higher incidences of NLMF with isometric contractions
2 i E £ .§ and cycling (no recovery periods) compared .to the repe'a.ted
é §§ § ;%'g dynamic and running studles‘ suggest that inter-repetition
3 recovery periods may play an important role NLMF effects.
2 0 El % However, the lack of effect could also be expla.lned by the
é E ER- fact that participants in these studies were trained endur-
: i-% % 5 ance athletes, or that the tested muscle groups were located
‘?‘3 % g = g in the upper body which demonstrate a reduced susceptibil-
= 5|9 = 5 ity to NLMF. While in two separate studies, Halperin et al.
: é 8 (2014b, c) employed similar testing protocols for the rested
‘%0 § 2 é elbow flexors but reported conflicting results. Whereas
2 : % % using five sets of bilateral, dynamic knee extensions to task
E E 8 Q failure elicited a small NLMF-induced MVC force loss
- ;9,3 E g with the contralateral elbow flexors (Halperin et al. 2014b),
g i il rg two sets of 100 s unilateral, isometric contractions did not
kS| é ;;3 ,é % elicit a NLMF response (Halperin et a'l. 2014c). Tl'liS incon-
g é é % g sistency might be attributed to differing contraction type.s
g‘ §§ a ﬁ E (dynamic vs. isometric), the dissimilar number of part.ICI—
%D 2 é - ‘§ £ pants in each study, or to a lower extent of .muscle act'lva—
%0 $8 5 = 8 tion with bilateral versus unilateral contractions (see bilat-
a == g g eral and unilateral tasks below). Thus, with the very few
£ 3 studies directly comparing contraction activation strategies
g 3 é 5 and the variability between single contraction type studies,
E L; E % a definitive conclusion cannot be formulated.
ERN = 3
§D a :5 g; ; Bilateral and unilateral tasks
. o3
E é 3 g § 8 Results of a recent study suggest that bilateral isometric
gb ;) ¢z g E % fatiguing protocols may lead to a greater NLMF effect com-
"E, E E %ﬁ 3 2 E = LQ; g § pared to unilateral fatiguing tasks (Aboodarda et al. 2015).
- E% :%3 @f 5 g é & 8 E "§ _E Aboodarda et al. (2015) had parti.cipants’ complete ﬁve
§ ’ - E f %’ sets of continuous MVCs .to ta.sk failure (a force reduction
‘§ = E E ) below 20 % of pre-test) with either one or both elbow flex-
S8 g © Ee 3 ors, prior to performing a number of MVCs with the rested
:’ 2 §§ C —E”Eﬂ E knee extensors. Whereas no NLMF effects were .found
E ﬁ = 5 § g7 after the unilateral fatiguing protocol, force production of
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knee extensors was reduced by 8 % following the bilateral
protocol, however statistical significance was not reached
despite large effect sizes (0.93—1.07) observed. This bilat-
eral performance decrement has been previously observed
and is reported to result from a reduction in neural drive
(Van Dieen et al. 2003). Importantly, there are reports that
bilateral contractions activate inter-hemispheric inhibitory
mechanisms (Oda and Moritani 1996, 1995), which may
subsequently affect the neural drive to the rested muscles.
The inconsistent results of the Halperin et al. (2014b, c)
studies could also be explained with a similar underlining
reasoning. Whereas Halperin et al. (2014b) implemented
a bilateral knee-extension fatiguing protocol and observed
a NLMF with the elbow flexors, Halperin et al. (2014c)
implemented a unilateral knee-extension fatiguing protocol
and did not record any NLMF effects.

Summary

Higher intensity muscle contractions seem to lead to greater
NLMF effects in the lower body compared to lower inten-
sity contractions, however, contraction intensity does not
seem to influence the upper body to a comparable extent.
Furthermore, isometric and cyclical contractions tend to
increase NLMF effects compared to dynamic contractions.
Finally, bilateral fatiguing protocols may lead to a larger
NLMF effect compared to unilateral protocols.

Testing protocols for non-exercised muscle groups

Most NLMF studies employ either (1) a single post-fatigu-
ing test MVC; ii) repeated MVCs interspersed by long rest
duration (>30 s) or (2) submaximal exercise to exhaus-
tion. Using time to exhaustion and repetitive MVC proto-
cols, investigators are more commonly able to observe a
larger NLMF response compared to a single MVC. Indeed,
NLMF deficits with individual muscle contractions for
force and power of only 3-10 % are common (Humphry
et al. 2004; Halperin et al. 2014b, c; Doix et al. 2013; Pail-
lard et al. 2010; Sidhu et al. 2014; Karageorghis and Priest
2012; Aboodarda et al. 2015), in contrast NLMF measured
with time to exhaustion tests elicit decrements of 10-50 %
(Bangsbo et al. 1996; Nordsborg et al. 2003; Amann et al.
2013; Triscott et al. 2008; Johnson et al. 2014). However,
it is challenging to compare the different outcomes as they
represent different constructs. Studies that tested for mus-
cle fatigue did so by employing units of force and power,
whereas exhaustion test studies are quantified by units of
time. Additionally, an uneven number of studies measured
force/power (31 studies with 48 measures) compared to
those recording time to exhaustion (six studies with nine
measures).

For instance, after performing a unilateral fatigu-
ing protocol with the elbow flexors, the contralateral arm
elbow flexor MVC remained unaffected, but significant
decrements (~20 %) were observed in time to exhaus-
tion tests with the same arm (Triscott et al. 2008). Amann
et al. (2013) reported similar findings in which a unilat-
eral fatiguing protocol of the knee extensors did not affect
the contralateral knee extensors MVC, but the subsequent
submaximal knee extensions to exhaustion was ~50 %
shorter compared to control conditions. Halperin et al.
(2014Db) tested the rested elbow flexors with a single 5 s
MVC, and after 2 min of rest, a strength-endurance proto-
col was conducted (12 MVCs at a rate of one 5 s contrac-
tion every 10 s). No NLMF effects were observed with the
single MVC, but force decrements were recorded in the
last 5 MVCs of the strength-endurance protocol. This sug-
gests that NLMF effects in the upper body may appear with
repeated MVCs with short rest durations and less so with a
single MVC, or repeated MVCs with long rest durations.

Indeed, most time to exhaustion tests were completed at
submaximal intensities, which are longer in duration com-
pared to maximal intensity activities. The higher incidence
and magnitude of NLMF with prolonged and repetitive
testing procedures might stress a number of physiological
systems (e.g., neural and biochemical) to a greater extent
than single contractions. For example, prolonged testing
contractions demand more persistent neural input, which
could augment global neural fatigue (e.g. inter-hemispheric
and/or corticospinal inhibition), and afferent inhibition of
spinal and cortical motoneurones (Behm 2004). Prolonged
or repetitive testing contractions may lead to a greater
accumulation of metabolic by-products in the tested mus-
cles, while activating type III and IV muscle afferents lead-
ing to inhibition of the central motor drive (Amann 2012,
2011; Sidhu et al. 2014; Amann et al. 2013) (see Mecha-
nisms of NLMF below). Disruptive metabolic by-products
could also be distributed globally directly affecting remote
muscle(s) performance that is more reliant upon efficient
energy expenditure (e.g., prolonged contractions, time
to exhaustion tests) (Bangsbo et al. 1996; Bogdanis et al.
1994; Halperin et al. 2014b; Johnson et al. 2014; Grant
et al. 2014; Nordsborg et al. 2003).

Lastly, the differences in effects between time to exhaus-
tion and the discrete MVC tests may be related to partici-
pant’s knowledge of exercise endpoint (e.g., number of rep-
etitions, distance or time of activity). In contrast to discrete
MVC testing, participants are not provided with an exercise
endpoint in the time to exhaustion tests. Lack of exercise
endpoint has been shown to hinder performance in various
exercise activities (Mauger et al. 2009; Billaut et al. 2011;
Faulkner et al. 2011; Halperin et al. 2014a). This hindrance
is suggested to be caused by the inability to develop a pac-
ing strategy (e.g., how to distribute the work and energy
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throughout the task), which could decrease the motivation
to complete the task in an optimal manner (Halperin et al.
2014a; Mauger et al. 2009). Such decrements in motivation
with time to exhaustion tests may be exacerbated after per-
forming a fatiguing task with a different muscle group.

Summary

Time to exhaustion and repetitive MVCs protocols typi-
cally record a greater NLMF response compared to discrete
MVCs. This could stem from a greater continuous stress on
the different systems (neural, biochemical and psychologi-
cal). However, due to the smaller number of studies inves-
tigating time to exhaustion compared to strength/power
outcomes, and the different units of measurements (time vs
power/force), these conclusions should be interpreted with
care.

Is NLMF muscle specific?

Not all muscle groups may be equally susceptible to
NLMF. The combined outcomes from the identified
research suggest that the lower body musculature has a
greater susceptibility to NLMF (Tables 1, 2). Indeed, 76 %
of all performance outcome measurements of the lower
limbs observed NLMF (23 of 30 measurements) (Table 1).
In contrast, only 32 % of all measurements testing the
upper body observed evidence for NLMF (nine of 28 meas-
urements) (Table 2). There was no evidence of upper body
muscle differentiation with most studies demonstrating a
lack of NLMF whether single muscle groups [elbow flex-
ors, handgrip, first dorsal intersosseous (FDI)] or multiple
muscle groups (upper body cycle ergometry) were tested.
The only study comparing the effects of fatiguing differ-
ent muscles groups on the magnitude of NLMF within the
same muscle group is the recent work of Halperin et al.
(2014c). These investigators utilized a continuous 100 s
MVC with either the elbow flexors or the knee extensors
resulting in force (~7 %) and muscle activation (~5 %) dec-
rements in the non-exercised knee extensors. In contrast,
these authors observed that NLMF was not replicated when
the two fatiguing protocols were repeated prior to testing
the non-exercised elbow flexors. Thus concluding that the
elbow flexors are less susceptible to NLMF than the knee
extensors, an observation, which is supported by studies
implementing multi-joint exercises as well (Alcaraz et al.
2008; Ciccone et al. 2014). For example, when compar-
ing upper body exercise in recreational resistance trained
men, the number of completed bench press repetitions was
unaffected when performed following lower body exer-
cises compared to control conditions (Alcaraz et al. 2008).
In related contrasting work, trained participants completed
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fewer repetitions and produced lower peak power with the
squat exercise when performed following upper body exer-
cise compared to control condition (Ciccone et al. 2014).

Whereas the quadriceps were the predominant lower
limb muscle group investigated with NLMF studies, there
were two plantar flexors studies. While Regueme et al.
(2007) reported no change in plantar flexors MVC force
following rebound jumps to exhaustion, Kennedy et al.
(2013) detailed an impairment of plantar flexor MVC force
following fatiguing isometric handgrip exercise. There
were also a number of studies reporting NLMF in the lower
limbs when using cycling to exhaustion tests after fatigu-
ing the upper body musculature with a cycling task (Bog-
danis et al. 1994; Bangsbo et al. 1996; Johnson et al. 2014;
Nordsborg et al. 2003). Bouhlel et al. (2010) examined if
fatiguing the lower limbs with a cycling task influenced
cycling performance with the upper body, and reversed
the exercise order on a different day. In their study trained
subjects completed six maximal effort cycling sets lasting
7 s with the upper and the lower body. While no significant
differences were observed between conditions, there were
reductions in peak power when the lower body was tested
after the upper body compared to the reverse. Furthermore,
very long rest periods between sets (5 min) were provided
which may have negated some of the NLMF effects.

When considering mechanisms to explain the greater
NLMF susceptibility of the lower compared to the upper
body, current literature does not have the investigative con-
trol or statistical power necessary to provide a conclusive
outcome. However, we would contest that the literature
does provide the basis for a working hypothesis, which
describes a transient neuromuscular impairment, especially
for the quadriceps (predominant lower body muscle tested).
Muscle fatigue is reported to decrease the ability to fully
activate the exercised muscle (Gandevia 2001), with the
quadriceps more difficult to fully activate compared to the
biceps brachii (Behm et al. 2002). Thus, we propose that
the fatiguing exercise hinders the nervous systems ability to
fully activate the non-exercised quadriceps. This hypothesis
is supported by reports of decrements in muscle activation
in the non-exercised legs, highlighting deficits in central
activation (Doix et al. 2013; Halperin et al. 2014c; Martin
and Rattey 2007; Kennedy et al. 2013; Aboodarda et al.
2015).

It is accepted that the quadriceps are larger (Miller et al.
1993) and produce greater force (Izquierdo et al. 1999) than
the upper body muscles, suggesting a possibility in which
the mass of the quadriceps influences the neural drive
required to fully activate and consequently, affects the mag-
nitude of NLMF. Indeed, the rate of perceived exertion was
found to be higher when completing five sets to task fail-
ure in the squat exercise compared to the bench press, even
when relative intensity (% of 1RM) and rest periods were
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controlled (Mayo et al. 2014). Thus, activation of larger
muscle mass found in the lower limbs may be associated
with greater perception of effort, making the subsequent
tests for the non-exercised lower body seem harder, which
may lead to a greater NLMF effect. However, there is no
evidence of muscle mass differentiation among the upper
body muscles (elbow flexors vs. handgrip vs. FDI), or con-
sidering the lack of convincing evidence for NLMF of the
plantar flexors with a similar lack of evidence for the larger
mass of multiple upper body muscle groups when cycling
(e.g., coordinated use of biceps brachii, triceps brachii,
pectoralis major, latissimus dorsi). Furthermore, Humphry
et al. (2004) observed NLMF in the smaller mass handgrip
muscles versus no NLMF in the larger mass elbow flexors
in the contralateral limb following dynamic elbow flexion
contractions with a 3.5 kg resistance until failure.

In addition, compared to the elbow flexors, the knee
extensors possess a slightly higher percentage of fast twitch
high threshold muscle fibres (average of 8 studies ~45 vs.
54 %, respectively) (Miller et al. 1993) and more motor
units (Galea et al. 1991). Importantly, the lower limbs serve
as locomotion generators in humans (MacKay-Lyons 2002;
Guertin 2012) and as such there is potential for the lower
body to possess a modified neural and reflex connectivity
compared to the upper body. The upper body muscles have
also been shown to be activated more frequently than the
lower body muscles during every day activities (Kern et al.
2001), which may differentiate the neural network of the
upper and lower body. We speculate that such differences
affect the susceptibility of the quadriceps to NLMF. This
suggests that the quadriceps are more difficult to activate
and are therefore more susceptible to NLMF, which may
be related to fatigue-induced alterations in the lower body
spinal connectivity. A caveat on this rationale of greater
central drive required to activate high threshold fast twitch
motor units is that currently this can only be applied to
investigations comparing knee extensors to the elbow flex-
ors muscle groups. However, both are the most frequently
tested muscle groups within the NLMF literature.

Summary

Lower body muscle groups (mainly quadriceps) seem to
be more susceptible to NLMF compared to the upper body
(mainly elbow flexors). Decrements in the nervous systems
ability to activate the non-exercised lower limb muscles are
a probable cause. This lack of activation could be related
to fact that the lower body muscles are larger, have more
motor units, possess a greater percentage of fast twitch
muscle fibres, and have a modified neural and reflex net-
work compared to the upper body muscle groups. Fur-
thermore, fatiguing exercises with the lower body lead to
a greater perception of effort compared to the upper body

exercises, thus potentially affecting performance of the
non-exercised muscles.

Confounding participant factors

There are a substantial number of factors that may con-
found a study’s design and thus the data interpretation
(Halperin et al. 2015). The two major factors observed
in the NLMF literature are a bias in the gender and train-
ing background of participants involved in the reported
investigations.

Gender

Only one study directly compared NLMF effects between
genders (Martin and Rattey 2007) observing that both gen-
ders demonstrated NLMF measured by a reduction in MVC
force, however, effects were larger with males (males:
13 %; females: 8 %). An important novel outcome in this
study was that central activation decreased by 9 % in males
and only 3 % in females. While it should be noted that out
of an overall 439 participants in NLMF studies, only 36
were females and muscle fatigue has been demonstrated to
be gender specific (Hunter 2009). According to a review by
Hicks et al. (2001) females tend to be more fatigue resistant
due to lower absolute muscle forces generated when per-
forming the same relative work as males, leading to a lower
muscle oxygen demand and less mechanical compres-
sion of the vasculature. Furthermore, males have a greater
reliance on glycolytic pathways than females and tend to
exhibit a greater impairment in neuromuscular activation
after fatiguing exercise (Hunter 2009; Hicks et al. 2001).
Hence the greater vascular compression and higher glyco-
lytic-based metabolite release might contribute to a global
reduction in muscle activation with fatigue and contribute
to possible NLMF gender differences. However due to the
dearth of comparative studies, it is suggested that future
studies use female participants due to the disproportionate
ratio of males to females in NLMF studies or recruit a suf-
ficient sample to provide a direct gender comparison as part
of the study design.

Training background

Currently only a single study has compared the NLMF
response between groups with differing training back-
grounds: healthy, strength-endurance and resistance trained
(Triscott et al. 2008). In this investigation after fatiguing
the elbow flexors, the contralateral arm MVC was unaf-
fected in all groups regardless of training history, however
using a submaximal task to failure both the healthy and
resistance trained participants demonstrated significant
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deficits whereas the strength-endurance trained subjects
were immune to such effects. Strength-endurance trained
subjects might accumulate less metabolic by-products due
to their lesser reliance on glycolytic pathways resulting in
less inhibitory metaboreceptor afferent input to the cen-
tral nervous system (Lattier et al. 2003). Similar to NLMF
studies, training status has also been shown to influence the
magnitude of maximal eccentric exercise-induced muscle
damage of the elbow flexors, with male strength trained
participants not experiencing the same magnitude of effect
and recovering faster than untrained males (Newton et al.
2008). This was suggested to result from training induced
muscle structure changes (elimination of susceptible fibres
or the addition of sarcomeres in series) (Morgan and Allen
1999), biochemical efflux changes such as a reduced heat
shock protein release (Koh 2002) or an enhanced neural
adaptation such as greater motor unit activation per unit of
torque (McHugh et al. 2000). Although the eccentric exer-
cise model is an extreme muscle contraction model it does
provide suggestive evidence for support of training status
as a confounding factor in NLMF. However, considering
that trained and untrained participants demonstrate differ-
ent muscle fatiguing profiles, the NLMF effect should be
investigated in future studies with greater consideration of
training backgrounds.

Summary

Based on the results of only two studies, but supported by
relevant literature, it is suggested that males have a greater
susceptibility to NLMF. While only a single study has
directly compared the effect of training status, it appears
that specific training backgrounds (i.e. strength-endurance)
can protect against a NLMF effect when the non-exercised
muscle groups are tested in a relevant and specific manner.

Mechanisms of NLMF
Neurological

The ability to fully activate a muscle depends on the con-
tributions of supraspinal and spinal excitatory and inhibi-
tory influences (Gandevia 2001). Fatigue of such structures
can result in a progressive exercise-induced reduction in
voluntary activation or neural drive to the muscles (Gande-
via 2001). We propose that fatigue-induced nervous system
alterations can account for some of the observed NLMF
effects.

The fatiguing protocols can alter the metabolic envi-
ronment in the working muscles leading to activation of
group III and IV muscle afferents (Amann 2012, 2011,
Amann et al. 2013; Martin and Rattey 2007). Through a
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feedback loop, the muscle afferents provide an inhibitory
effect to the central nervous system leading to decrements
in central drive to the working muscle and potentially to
the non-exercised muscles as well (Amann 2012, 2011;
Sidhu et al. 2014; Amann et al. 2013). The termination of
high intensity constant load exercise has been suggested to
occur once an individual’s sensory tolerance limit has been
reached (Amann 2012; Amann et al. 2013). Such a sensory
tolerance limit may have global or NLMF effects and can
be associated with a certain level of peripheral fatigue and
metabolic by-products (Amann 2012, 2011; Amann et al.
2013). Once approached or reached, inhibition of central
drive will take place. Thereafter, when testing the non-
exercised muscle group, the afferent feedback from the
fatigued muscle could still remain high. Accordingly, the
afferent feedback coming from the working tested muscle
group in combination with the previously fatigued mus-
cle group, could lead to a more rapid central drive inhibi-
tion due to reaching the sensory tolerance limit (Amann
et al. 2013). Support for this model came from Sidhu et al.
(2014) who compared the effects of cycling to exhaustion
with and without sensory feedback from lower limbs on
force production and activation of the elbow flexors. Grad-
ual reduction in the responsiveness of the motor cortical
cells and/or spinal motoneurons were found during the
control day, whereas no changes occurred when the same
exercise was performed with blocked lower limb muscle
afferents. This suggests, group III and IV muscle afferents
exert inhibitory influences on the corticospinal motor path-
ways of the upper limb in the presence of lower body mus-
cle fatigue.

However, recently reported results suggest that the
NLMF effects of group III and IV afferent are unlikely
(Kennedy et al. 2015). In this study participants completed
a series of MVCs with the contralateral knee extensors
after completing a two minute continuous unilateral MVC
of the knee extensors on two occasions. On 1 day a sphyg-
momanometer cuff was placed around the fatigued leg after
the fatiguing protocol, and prior to testing the rested limb,
while on the alternative testing day no cuff was placed
around the fatigued limb. Since blood occlusion is expected
to increase the firing frequency of group III and IV affer-
ents within in the fatigued muscle, and lead to decrements
in central drive, greater deficits in performance and activa-
tion are to be expected in the contralateral limb. However,
no differences were observed between conditions, and no
NLMF effects were recorded compared to pre-test values.
Thus, further investigation is required to confirm the contri-
bution of group III and IV afferents to NLMF effects.

Interestingly, the NLMF effects can excite or inhibit
components of the corticospinal pathway depending on
the time of measurement and the muscles involved. A
number of studies have illustrated increased motor evoked
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potentials (MEP: assessment of corticospinal excitabil-
ity) of the non-fatigued muscles during fatiguing contrac-
tions of the affected muscle (Takahashi et al. 2011; Sted-
man et al. 1998; Matsuura and Ogata 2015). However,
MEPs elicited from the non-fatigued muscles have also
been reported to decrease (Bonato et al. 1996; Takahashi
et al. 2009, 2011). As MEP responses are indicative of
corticospinal excitability, further measures are necessary
to more specifically highlight the most predominant site
of action. Aboodarda et al. (2015) examined spinal (tho-
racic motor evoked potentials (TMEPs) and peripheral
[femoral nerve stimulation (Mmax)], knee extensor MVCs
and EMG) excitability following unilateral and bilateral
fatiguing elbow flexion MVC. Although vastus lateralis
EMG activity was reduced by 18 % following the bilateral
fatiguing protocol, spinal excitability as measured with a
TMEP-Mmax ! ratio significantly increased (46 %). Since
the decrement in EMG activity could not be ascribed to
spinal inhibition, it was surmised that supraspinal motor
output must have been reduced. Takahashi et al. (2009,
2011) made similar deductions based on a decrease in short
interval intracortical inhibition (SICI: assessment of excit-
ability of intracortical inhibitory circuits) that matched the
time course of MEP decreases in both studies (fatigue of
hand grip muscles and quadriceps respectively with exami-
nation of FDI and biceps brachii). More specifically, it has
been postulated that an increased tonic level of inter-hem-
ispheric or transcallosal inhibition could be a contributing
factor (Takahashi et al. 2009, 2011). Furthermore it is also
conceivable that indirect connections from pre-motor areas
(Byblow et al. 2007, Takahashi et al. 2011) or upstream of
the motor cortex (Matsuura and Ogato 2015) could also
play an important role with NLMF responses.

There is also evidence for a shared neural network
between contralateral limbs as evident by the cross-exten-
sor reflex (Sherrington 1910) and cross-education phe-
nomena (Carroll et al. 2006). Such neural networks may
affect the NLMF found in the contralateral fatigue studies.
Indeed, unilateral fatigue has been shown to decrease the
intracortical facilitation of the motor cortex in control of the
non-exercised contralateral muscle (Baumer et al. 2002). A
unique neural network connecting to upper and lower body
has been demonstrated to exist (Huang and Ferris 2004; de
Kam et al. 2013) potentially influencing the NLMF effects.
For example, it was reported that cyclic tasks with the
upper body elicit muscle activation in the lower limbs as a
function of cycling intensity (Huang and Ferris 2004). Such
muscle activation values (~55 % of MVC) could poten-
tially induce muscle fatigue in the lower limbs leading to
NLMF as was demonstrated by implementing an upper
body cycling task prior to testing the lower body muscles.
However at this juncture more research is needed to verify
this assumption.

An additional potential pathway hindering neural drive
to the non-exercised muscles includes perturbations to cer-
ebral oxygenation and metabolism. During maximal effort
exercise cerebral oxygenation has been shown to decrease
(Nybo and Rasmussen 2007). Rasmussen et al. (2010)
observed the effects three lower body cycling tasks had
on the rested elbow flexors MVC: (1) a 20 min light inten-
sity task, (2) a hypoxic 20 min light intensity task, and (3)
maximal effort task to exhaustion. Whereas the elbow flex-
ors remained unaffected after the light protocol, MVC and
activation decreased to a similar extent following the light
hypoxic and high intensity protocol. These decreases were
associated with lowered cerebral oxygen delivery, which
is suggested to hinder central drive to the rested muscles
(Rasmussen et al. 2010).

The neural influence in the extent of NLMF is further
supported by recent evidence of NLMF-like effects occur-
ring following extensive passive stretching. Impairments in
jump height were found following a passive stretching pro-
tocol of the contralateral limb (da Silva et al. 2015) or the
upper body limbs (Marchetti et al. 2014). Passive stretching
would not have resulted in any substantial accumulation of
metabolites, and thus cardiovascular dispersion of metabo-
lites or metaboreceptor-related afferent inhibition would
have to be mediated by a different neural pathway. How-
ever, not all non-local stretching studies observed NLMF-
like effects. Chaouachi et al. (2015) employed unilateral
hip flexion static and dynamic stretching, reporting that the
contralateral non-stretched hip flexors experienced 6-8 %
range of motion increase, but no significant decrements
with isokinetic torque. Overall, further investigation and
comparisons of passive and active muscle actions on non-
local effects will assist in eliciting greater insight into the
NLMF mechanisms.

Summary

Fatiguing protocols activate group III and IV muscle affer-
ents, which is speculated to decrease central drive the non-
exercised muscles. The neural pathways accounting for
NLMF most likely include the shared network connect-
ing to upper and lower body and the contralateral limbs.
Emerging evidence suggests that the motor output reduc-
tion is located supraspinally. A decrease in cerebral oxy-
genation occurring during intense exercise could also lead
to subsequent NLMF. Indirect support of the neural path-
ways leading to NLMF includes the non-local effects of
stretching different muscles on non-stretched muscles.

Biochemical

The greater NLMF effect with prolonged, high inten-
sity contractions can lead to blood mediated migration of
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metabolic by-products originating in the fatigued muscles.
Such metabolites can also be distributed to remote mus-
cles via the cardiovascular system and directly influence its
ability to contract. Indeed, increments in potassium (John-
son et al. 2014; Nordsborg et al. 2003), hydrogen (Bangsbo
et al. 1996; Johnson et al. 2014) and blood lactate (Bangsbo
et al. 1996; Bogdanis et al. 1994; Halperin et al. 2014b;
Johnson et al. 2014; Grant et al. 2014), were reported at
the initiation of the testing procedure of the non-exercised
muscles. The importance of blood lactate and hydrogen in
relation to muscle fatigue is disputed (Lamb and Stephen-
son 2006) and suggested to have been overestimated (Allen
et al. 2008); however, these metabolites may still hinder
the muscles’ ability to contract. Hydrogen ions have been
shown to reduce the force per cross bridge in both fast
and slow fibers (Fitts 2008; Knuth et al. 2006), and reduce
myofibrillar Ca?* sensitivity (Fitts 2008). The latter may
have a significant contribution to the decline in force in the
late stages of fatigue when the amplitude of the Ca>* tran-
sient is reduced (Allen et al. 1989).

Additionally, induced acidosis can aggravate fatigue
in intact humans (Kowalchuk et al. 1984; Hultman et al.
1985). It was also demonstrated that repeated activation
of a muscle increases the extracellular levels of potassium
(Sejersted and Sjggaard 2000), which could potentially
migrate to the non-exercised muscles. Indeed, repeated
muscle activation can result in alteration of electrochemi-
cal gradients for potassium, which can lead to consider-
able reduction in force (Juel 1986). In relation to NLMF,
it is suggested that accumulation of extracellular potassium
can reduce the excitability of the active muscle leading to
fatigue (Nordsborg et al. 2003). An alternative transient
metabolite is the known response of heat shock proteins to
exercise (Koh 2002). Exercise results in these metabolites
being present in non-exercised systems or organs (Jammes
et al. 2012) and the implicated effects of heat shock pro-
teins as a immunomodulator at a central level (Heck et al.
2011). Elevated levels of heat shock proteins, in particu-
lar HSP 70, is also reported to have detrimental effects
on force recovery and low frequency fatigue (Thomas
and Noble 1999). It should be noted, however, that the
produced metabolites exert interactive effects on muscle
force and performance and need to be considered together
(Cairns and Lindinger 2008).

Summary

During and after the completion of the fatiguing protocols,
different metabolites such as potassium, hydrogen, lactate
and heat shock proteins can be circulated to remote non-
exercised muscles via the cardiovascular system, and pos-
sibly hinder their contractile ability.
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Biomechanical

Some effects of NLMF could be attributed to deficits in the
ability of the fatigued muscle groups to optimally stabilize
the body while the non-exercised muscles are tested. For
example, Baker and Davies (2009) reported that the hand-
grip muscles have a key role in power production during
maximal cycling test. When participants were required to
cycle without gripping the handlebar during a 30 s cycling
sprint, peak power was 20 % lower (Baker and Davies
2009). It is possible that observed NLMF during high
intensity lower body cycling tasks performed after an upper
body fatiguing protocol may actually result from an inabil-
ity of the handgrip muscles to optimally stabilize the upper
body due to accumulated fatigue (Bogdanis et al. 1994;
Grant et al. 2014). Indeed, fatiguing the elbow flexors
prior to testing the non-exercised lower limbs with a maxi-
mal cycling test also led to muscle fatigue of the handgrip
muscles (Grant et al. 2014). Similarly, the trunk muscles
(abdominal and lower back) are suggested to act as stabi-
lizers during upper and lower body movements, thereby
creating an efficient proximal to distal patterning of force
generation (Kibler et al. 2006). High muscle activation of
the trunk muscles has been reported during upper (Tar-
nanen et al. 2008) and lower (Danneels et al. 2001) body
activities. Thus, in some occasions NLMF effects may sim-
ply be due to participant’s inability to optimally stabilize
themselves with the fatigued muscles in order to produce
the required outputs with the rested muscle groups. This
explanation, however, can only account for exercise modal-
ities in which the fatigued muscles are needed to work as
stabilizers (e.g., grip muscles during cycling).

Summary

Specific fatiguing protocols may activate the stabilizer
muscles to a larger extent which subsequently hinders their
ability to stabilize during testing of the non-exercised mus-
cle groups, thereby leading to muscle force decrements and
an observation of indirect NLMF.

Psychological pathways

Mentally fatiguing cognitive tasks are reported to hinder
performance in subsequent physical tasks, especially with
repeated and/or continuous efforts (Dorris et al. 2012; Mar-
cora et al. 2009; Pageaux et al. 2014, 2013; Martin Ginis
and Bray 2009; Graham et al. 2014). It was demonstrated
that such mentally fatiguing tasks lead participants to per-
ceive the activity as more strenuous, and thus to disen-
gage from it earlier (Pageaux et al. 2013, 2014; Marcora
et al. 2009). It should be noted that physical tasks also
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include a cognitive demand such as inhibiting the natural
response to quit when exercise becomes uncomfortable,
or sustained attention to maintain the required force when
using submaximal tasks with force feedback. These cogni-
tive demands can lead to mental fatigue and increase rat-
ings of perceived exertion and impair performance in the
subsequent task with the non-fatigued muscle. It can thus
be speculated that performing a physically fatiguing task
before testing for NLMF effects in the rested muscle may
be analogous to performing a mentally or cognitively
fatiguing task. This hypothesis is partially supported by
Amann et al. (2013) who reported greater perceived exer-
tion scores at the onset of exercise with the rested muscle
group after completing the fatiguing protocol, but only
marginal, non-significant differences in the overall exer-
tion scores in the study by Elmer et al. (2013) who also
failed to find a NLMF effect. Additionally, both Pageaux
et al. (2013) and Rozand et al. (2014) observed that discrete
MVCs with the knee extensors remained unaffected by a
previous mentally fatiguing task. However, Pageaux et al.
(2013) also observed that a subsequent submaximal iso-
metric time to exhaustion test with the knee extensors was
shortened after the mentally fatiguing task. This last find-
ing supports the NLMF literature reporting larger effects
with time to exhaustion tests compared to single, discrete
MVCs. Future studies should further examine this hypoth-
esis by including motivational, affect and/or exertion scales
after the completion of the first fatiguing task, and before
initiating the second physical task with the rested muscle
groups, and compare the results to a control condition.

Summary

Fatiguing protocols can lead to mental fatigue, which may
then decrease motivation to complete the subsequent motor
task with the non-exercises muscles. Alternatively, mental
fatigue may increase the sensation of effort during the fol-
lowing physical activities. This is especially the case dur-
ing submaximal and continuous tasks such as steady state
cycling.

Conclusion

While the overall literature is conflicting, there is evi-
dence that NLMF is more prevalent when certain factors
are taken into consideration. Particularly, NLMF effects
tend to be more predominant when the lower body (pri-
marily the quadriceps) rather than the upper body is tested,
which could be a manifestation of differences in the neu-
ral network of the upper and lower body. In particular, the
greater difficulty in activating the quadriceps results in a
greater susceptibility to NLMF. Additionally, isometric

and cyclical fatigue protocols appear to lead to a higher
incidence and magnitude of NLMF. Performance of these
protocols requires prolonged or repeated motor command
function, which might stress a number of physiological sys-
tems (e.g., neural and biochemical) to a greater extent than
protocols requiring repeated dynamic or stretch—shorten-
ing cycle contractions. Extended and submaximal testing
tasks with the rested muscle groups seem to lead to greater
NLMF effects compared to short and discrete maximal
contractions. It can be speculated that the combination of
the previous fatiguing exercise with the accumulated meta-
bolic by-products produced in the longer duration time to
exhaustion test leads a greater observable NLMF effect.
However the gender, training background of the partici-
pant, and which muscle group is fatigued all influence these
outcomes. There is evidence for NLMF effects to be attrib-
uted to a dominant neurological mechanism however there
is biochemical, biomechanical and psychological factors
influencing the outcome to various degrees and these are
likely to be inter-related. Considering the importance and
relevance of this topic, more research is needed to clarify
the size of the effects using adequate methods, and with an
attempt to account for some of the described confounding
variables.
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